Curvelet based Image Compression using Support Vector Machine and Core Vector Machine – A Review

نویسندگان

  • P. Anandan
  • R. S. Sabeenian
چکیده

Images are very important documents nowadays. To work with them in some applications they need to be compressed, more or less depending on the purpose of the application. To reduce transmission cost and storage requirements, competent image compression schemes without humiliation of image quality are required. Several image coding techniques were developed so far for both lossless and lossy image compression. Extensions of 1-D transforms such as wavelet transform have limitations of capturing geometry of image edges. Functions that have discontinuities along straight lines cannot be effectively represented by normal wavelet transforms but natural images have geographic lines such as edges, textures which cannot be well reconstructed if compression is done by 1-D Transforms. Nowadays image coding is done, using Curvelet Transform since it supports different orientations of image textures. An investigation is done on various types of image coding techniques based on Curvelet Transform that exist. This paper deals with study of image compression techniques using Curvelet Transform based on Support vector machine and Core vector machine with their performance results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Acoustic detection of apple mealiness based on support vector machine

Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...

متن کامل

Classification of transformer faults using frequency response analysis based on cross-correlation technique and support vector machine

One of the most important methods for transformers fault diagnosis (especially mechanical defects) is the frequency response analysis (FRA) method. The most important step in the FRA diagnostic process is to differentiate the faults and classify them in different classes. This paper uses the intelligent support vector machine (SVM) method to classify transformer faults. For this purpose, two gr...

متن کامل

Brain Tumor Detection using Curvelet Transform and Support Vector Machine

The prevalent cause of death in human being is brain tumor. A brain tumor is a mass or growth of anomalous cells in brain. The detection of brain tumor is difficult task. Image processing provides relevant techniques for efficient detection. In the proposed technique, first the features of MRI (Magnetic Resonance Imaging) images are extracted with curvelet transform, and then these features are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014